A new approach of distributed power generation

Dr. Thorsten Krol
Content

• Introduction
 • Market description
 • Operational analysis

• Discussion of various solution options
 • Modernization of existing power plants
 • New Installations
 • Centralized power generation
 • De-centralized power generation

• Reference cases for new installations
Operational market driver

1. Grid stability – country overview

2. Wind in Energy mix

3. No. of redispatches p.a. in local grid

4. Profit situation LGT-driven power plants

* Projection from available data Apr. 1st – Dec. 2013

** Data from Jan. – Jul. 31st, 2015

Example profit situation of large GT-driven power train

<table>
<thead>
<tr>
<th>Year</th>
<th>Positive CSS</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>84.9 %</td>
<td>7.437 h</td>
<td>6.053 h</td>
<td>36.3 %</td>
<td>19.7 %</td>
<td>20.7 %</td>
</tr>
<tr>
<td>2011</td>
<td>69.1 %</td>
<td>6.053 h</td>
<td>3.180 h</td>
<td>1.726 h</td>
<td>1.813 h</td>
<td></td>
</tr>
</tbody>
</table>
Differences in operating regimes

<table>
<thead>
<tr>
<th>Operations statistics</th>
<th>Base load operation conventional</th>
<th>Base load operation renewable</th>
<th>Peak load operation renewable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations in capability diagram</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active power share</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Active power

- **Thermal rotor limit**
- **Power factor**
- **Thermal stator winding limit**
- **Step iron limit**
- **Steady state limit**

Operation in capability diagram

- **< 60%**
- **60% - 90%**
- **> 90%**

Unrestricted © Siemens AG 2015 All rights reserved.
Page 4 September, 2015 VGB-Kraftwerke 2015 Wien Dr. T. Krol AL=N; ECCN=N
Differences in operating regimes

<table>
<thead>
<tr>
<th>Operations statistics</th>
<th>Base load operation conventional</th>
<th>Base load operation renewable</th>
<th>Peak load operation renewable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load changes and change rate</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Operations summary | • >7000 operating hours
• Defined loading points in power diagram
• Low number of starts and load changes | • >7000 operating hours
• Defined loading points in power diagram
• Low number of starts and high number of load changes | • <1000 operating hours
• Operation in power diagram on demand
• Low number of starts and highest number of load changes |
Changes in Power Markets: Centralized Power Generation

Generation

Transmission & Distribution

Consumption
Gas Turbine Modernizations
Operational Flexibility

<table>
<thead>
<tr>
<th>Combined Cycle Start Up</th>
<th>Frequency Sensitive Mode and Frequency Restoration Reserve</th>
<th>Peak Load & Grid Support</th>
<th>Minimum Load Improvement</th>
<th>Shut Down and Restart Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Turbine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fast GT Start Up with Hot-Start-On-The-Fly</td>
<td>GT Load Gradient Increase within IGV actuation range</td>
<td>Turn Up & (Fast) Wet Compression</td>
<td>Part Load Upgrade & Extended Turn Down</td>
<td>Shut Down Gradient & Reduced GT Cool Down Time</td>
</tr>
<tr>
<td>Steam Turbine</td>
<td>(Advanced) Hot-Start-On-The-Fly</td>
<td>EOH counter, (load change) Stress controller</td>
<td>multiple measures to reduce wetness & thermal fatigue</td>
<td>Parallel shut down</td>
</tr>
<tr>
<td>Generator</td>
<td>Turninggear Operation, Frequent starting</td>
<td>Operation in load following regime</td>
<td>Power increase of generators</td>
<td>Generator Efficiency in Power Train</td>
</tr>
</tbody>
</table>

Geneva - generator

Standard Operation Line

Flex Operation Line

Base Load (P*)
Changes in Power Markets:
Centralized Power Generation

Generation

Transmission & Distribution

Consumption
Advanced 50Hz F-Class gas turbine

SGT5-4000F

- **Gross power output**: 307 MW*
- **Gross Efficiency**: 40 %*
- **Gross Heat rate**: 9001 kJ/kWh
- **Exhaust mass flow / temp.**: 723 kg/s / 579 ºC*
- **Weight**: 312000 kg

Combined Cycle Package i.e. 1S

- **Net power output**: 445 MW
- **Net efficiency**: 58.7 %
- **Net heat rate**: 6133 kJ/kWh
- **Number of gas turbines**: 1
- **Pressure / Reheat**: Triple / Yes

* @ ISO conditions, 50mbar backpressure
Changes in Power Markets:
Centralized Power Generation

Generation

Transmission & Distribution

Consumption
IPPS - Gas Turbine power plants
Stable efficiency in a wide load range with multiple GTs

Performance EconoFlex6™

Long term experience of Turbines
→ SGT-800
→ SST-900

Robust technology
→ High reliability

Best serviceability
→ Highest Power plant availability

Focus on customer needs
→ High flexibility

EconoFlex6™

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Output, MW net*</td>
<td>425 MW</td>
</tr>
<tr>
<td>Net efficiency*</td>
<td>56.2 %</td>
</tr>
<tr>
<td>Power within 10 minutes*</td>
<td>286 MW</td>
</tr>
<tr>
<td>Minimum load, % / MW*</td>
<td>10% / 42 MW</td>
</tr>
<tr>
<td>Ramp rate, MW / min*</td>
<td>73 MW/min</td>
</tr>
</tbody>
</table>

* @ ISO conditions, 50mbar backpressure
Changes in Power Markets: New centralized vs. decentralized Power Generation
Changes in Power Markets:
New centralized vs. decentralized Power Generation

Generation

- CG dominated
- DG dominated

Transmission & Distribution

- Reduction of system losses
- System losses in Europe
- Source: IEA

Consumption

- Lower generation efficiencies still economic
- Lower investments in grid while slightly higher investment in generation
- additional profit options by CoGen and local grid stabilization

System losses in Europe

- 0% - 3%
- 3% - 6%
- 6% - 9%
- 9% - 12%
- >12%
Product range

Power Band

<table>
<thead>
<tr>
<th>Power Generation</th>
<th>SGT-100 5.4 MW</th>
<th>SGT-200 6.8 MW</th>
<th>SGT-300 7.9 MW</th>
<th>SGT-400 13.4 MW</th>
<th>SGT-500 19.1 MW</th>
<th>Ind. RB211-G62 (27.2 MW)</th>
<th>Ind. RB211-GT61 (32.1 MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proven for Power Generation and Cogeneration</td>
<td>Fuel flexibility, Fast start time</td>
<td>Operates on a wide range of fuels</td>
<td>Excellent steam rising capability</td>
<td>Burns heavy fuel (HFO) oil and crude oil</td>
<td>High simple cycle efficiency</td>
<td>Low maintenance, high availability</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Packages</th>
<th>SGT-100 Package</th>
<th>SGT-200 Package</th>
<th>SGT-300 Package</th>
<th>SGT-400 Package</th>
<th>SGT-500 Package</th>
<th>Ind. RB211-Package</th>
<th>Ind. Trent - Package</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Packages

- SGT-100 Package
- SGT-200 Package
- SGT-300 Package
- SGT-400 Package
- SGT-500 Package
- Ind. RB211-Package
- Ind. Trent - Package

- SGT-600 Package
- SGT-700 Package
- SGT-750 Package
- SGT-800 Package

Product Range

- **Ind. 501-K**
 - 3.9 - 5.7 MW
 - Fuel flexibility, Fast start time

- **SGT-200**
 - 6.8 MW
 - Compact design, Operates on various fuels

- **SGT-300**
 - 7.9 MW
 - Operates on a wide range of fuels

- **SGT-400**
 - 13.4 MW
 - Excellent steam rising capability

- **SGT-500**
 - 19.1 MW
 - Burns heavy fuel (HFO) oil and crude oil

- **Ind. RB211-G62**
 - (27.2 MW)

- **Ind. RB211-GT61**
 - (32.1 MW)

- **Ind. RB211-GT62**
 - (27.2 MW)

- **Ind. RB211-GT62**
 - (29.8 MW)

- **Ind. Trent DLE**
 - (54.0 MW)

- **Ind. Trent WLE**
 - (65.6 MW)

- **SGT-700**
 - 32.8 MW
 - Fuel flexibility: LNG, FLNG, Upstream

- **SGT-750**
 - 37.0 MW
 - Low maintenance, high availability

- **SGT-800**
 - 47.5/50.5/53 MW
 - Proven, high efficiency

Proven for Power Generation and Cogeneration

- Compact design, Operates on various fuels
- Excellent steam rising capability
- Burns heavy fuel (HFO) oil and crude oil

- High simple cycle efficiency
- Low maintenance, high availability

Fuel flexibility

- LNG, FLNG, Upstream
- Burns heavy fuel (HFO) oil and crude oil

High simple cycle efficiency

- Fast start and restart capability
- High simple cycle efficiency

Proven, high efficiency

- Fast start and restart capability
- High simple cycle efficiency
Technology leader with best gas turbines technology designed for your needs

Flexibility by combination of leading technologies

Aero-derivative gas turbines (ADGT’s)
- Long term proven technology
- Fixed and floating applications

Industrial gas turbines (IGT’s)
- Focus on industrial and electrical power generation

Best solution for your needs in
- industrial,
- CoGen, and
- Combined Cycle applications with high potential in reliability, life cycle, efficiencies, flexibility (part load efficiency, load change rate, parking load, etc.)

Significant increase of flexibility by combining leading technologies
Delimara (Malta)
Reliable CCPP with high efficiencies

Project Summary

<table>
<thead>
<tr>
<th>Project</th>
<th>Delimara</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>ElectroGas, Malta</td>
</tr>
<tr>
<td>Application</td>
<td>205 MW<sub>e</sub> LNG-fired power plant</td>
</tr>
<tr>
<td>Technology</td>
<td>3 x SGT-800 Gas Turbines, 3 x HRSG and 1 x SST-900 Steam Turbine</td>
</tr>
<tr>
<td>Start</td>
<td>2014</td>
</tr>
</tbody>
</table>
| Complete | Summer 2016 for Open Cycle
End 2016 for Combined Cycle |
| Challenge |
- Governmental change out of heavy fuel oil towards LNG
- Reliable power generation for 50% of Malta’s electricity demand |
| Solution |
- Combined cycle power plant based on 3 x 1 configuration delivers 205MW_e with high efficiency and low emissions also at part load operation
- High performance in high ambient air temperatures by inlet air cooling system using chilling power from LNG regasification process |
| Benefits |
- Reduced level of air pollution and fuel consumption in country
- Low power generation costs
- Reliable technology with high availability |
Bayonne Energy Centre – Gas-fired power plant

Utility

<table>
<thead>
<tr>
<th>Project Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project</td>
</tr>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Application</td>
</tr>
<tr>
<td>Technology</td>
</tr>
<tr>
<td>Start</td>
</tr>
<tr>
<td>Complete</td>
</tr>
<tr>
<td>Challenge</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Solution</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Benefits</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Summary

1. **Modernize existing Power Plants**
 - Extend life time and usage of existing and payed off assets
 - Enhanced operational flexibility to meet new operating conditions
 - High mass of inertia remains in grid for frequency stabilization
 - Low investment costs

2. **New LGT Power Plant centralized**
 - Optimized for customers with high power demand
 - Highest full load efficiencies
 - Utilization of existing distribution grids
 - Lowest investment per MW installed

3. **New SGT Power Plant centralized**
 - Utilization of existing distribution grids
 - Highest availability
 - High operational flexibility

4. **New SGT Power Plants decentralized**
 - Maximum operational flexibility optimized for local demand in grid
 - Directly embedded into Smart Grid
 - CAPEX can be spread over time
 - Short installation time
 - High availability
Thank you for your attention!
Disclaimer

This document contains forward-looking statements and information – that is, statements related to future, not past, events. These statements may be identified either orally or in writing by words as “expects”, “anticipates”, “intends”, “plans”, “believes”, “seeks”, “estimates”, “will” or words of similar meaning. Such statements are based on our current expectations and certain assumptions, and are, therefore, subject to certain risks and uncertainties. A variety of factors, many of which are beyond Siemens’ control, affect its operations, performance, business strategy and results and could cause the actual results, performance or achievements of Siemens worldwide to be materially different from any future results, performance or achievements that may be expressed or implied by such forward-looking statements. For us, particular uncertainties arise, among others, from changes in general economic and business conditions, changes in currency exchange rates and interest rates, introduction of competing products or technologies by other companies, lack of acceptance of new products or services by customers targeted by Siemens worldwide, changes in business strategy and various other factors. More detailed information about certain of these factors is contained in Siemens’ filings with the SEC, which are available on the Siemens website, www.siemens.com and on the SEC’s website, www.sec.gov. Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in the relevant forward-looking statement as anticipated, believed, estimated, expected, intended, planned or projected. Siemens does not intend or assume any obligation to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.