Hydrogen Co-Firing in Siemens Low NO$_x$ Industrial Gas Turbines

Adj Professor Jenny Larfeldt
Senior Combustor Expert
Table of content

- Fundamentals on H₂ co-firing
- From fundamentals to real engines
 - Atmospheric combustion rig test
 - Pressurized single burner test
 - Pressurized single can test
- Next steps
Fundamentals on H₂ co-firing 1(2)

Wobbe-index = \(\frac{LHV}{\sqrt{\rho_{rel}}} \)

\(\rho_{rel} = \frac{\rho_{gas}}{\rho_{air}} \)

Heavy hydrocarbons

1. 100 % H₂
2. 75/25 H₂/N₂
3. 50/50 H₂/N₂

Standard range NG WI: 42 to 53 MJ/Nm³

0 10 20 30 40 50 60 70 80 90

0 10 20 30 40 50 60 70 80 90

Lower Heating Value [MJ/kg]

Wobbe Index [MJ/Nm³]
Fundamentals on H₂ co-firing 2(2)

H₂ has ten times higher flame speed compared to natural gas.

Co-firing H₂ and CH₄/C₂H₆/C₃H₈
- H₂ < 60 vol-%: slight increase in burning velocity and chemistry hydrocarbon dominated
- 60 < H₂ < 90 vol-% intermediate regime
- H₂ > 90 vol-% dramatic increase in laminar burning velocity and chemistry is hydrogen dominated.
From fundamentals to real engines
SGT-800 / 53MW

- 30 DLE burners of so called 3rd generation in an annular combustor
- Air entering combustor with about 20 bar and 700 K

https://www.youtube.com/watch?v=uY-iQYpO_a8
From fundamentals to real engines
Step 1. Atmospheric combustion rig test
From fundamentals to real engines
Step 2a. Pressurized single burner test 1(2)

Single burner feed in engine

- LNG
- GU1
- GU2
- Buffer
- GU1
- GU2
- Hydrogen
- Other fuels

EBIT
- Experimental burner:
 - Separate fuel feed
 - Extra instrumentation including dynamics measurement

EBIT Boroscope probe

Engine Dynamics probes

Engine stack
- Emissions probe

Engines 16 circumferential T7 probes
- Outer
- Inner

36MW generator

0% H₂
12% H₂
20% H₂
32% H₂
From fundamentals to real engines
Step 2. Pressurized single burner test 2(2)

- Customer had a constant flow of hydrogen corresponding to approximately 0.5 ton/h.
- For a SGT-700 this resulted in hydrogen content in the fuel varying between 50-75 % for loads between 27 and 10 MW.
- A small increase of NO\textsubscript{X} was seen as hydrogen content increases, but the increase is only significant above 45 % hydrogen.
- The 2014 tests confirmed the possibility to run the SGT-700 on high hydrogen fuels with results indicating that 40-50 % H\textsubscript{2} is possible at high loads.
- At 10 MW load, 100 % H\textsubscript{2} was tested and it was fully possible to run, but the hydrogen flow had to be doubled and NO\textsubscript{X} emissions were about 60 % higher than the high load emissions.
Additive manufacturing of SGT-600/700/800 standard burner
Rapid prototyping speeds up development

Traditionally manufactured burner front
- 13 machined parts, joined by 18 welds.
- External pilot gas feed
- Weight: 4.5 kg

SLM adapted burner front
- One single part
- Pilot gas feed integrated in structure
- Lead time reduction of >75%
- Weight: 3.6 kg
From fundamentals to real engine SGT-750
Step 2b. Pressurized single can test

© Siemens AG 2017 All rights reserved.
Conclusions

Next steps:

- SGT-800 string test with 50 vol% H₂ co-firing (Aug 2017)
- Co-firing with 15 vol% H₂ in SGT-800 at Industriepark Höchst, Frankfurt (Dec 2017).
- Burner design for 100% H₂ to be tested at pressure in Siemens combustion test facility in Berlin (ongoing R&D).
- SGT-750 scaled burner tests for NH₃/N₂/H₂ mixtures together with universities.

<table>
<thead>
<tr>
<th>Gas Fuel Constituents</th>
<th>SGT-800</th>
<th>SGT-750</th>
<th>SGT-700</th>
<th>SGT-600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methane, CH₄</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Ethane, C₂H₆</td>
<td>100</td>
<td>35</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Propane, C₃H₈</td>
<td>100</td>
<td>30</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Butanes and heavier alkanes, C₄+</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>Hydrogen, H₂</td>
<td>30</td>
<td>15</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Carbon monoxide, CO</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>Inerts, N₂/CO₂</td>
<td>50/40</td>
<td>50/40</td>
<td>50/40</td>
<td>50/40</td>
</tr>
</tbody>
</table>
Thank you for your attention

Ajdunct professor Jenny Larfeldt
Senior Combustor Expert
PG DG GPS CTV
Slottsvagen 3
612 38 Finspång
Phone: +46 122 82 789
Mobile: +46 70 180 14 147
E-mail: jenny.larfeldt@siemens.com

siemens.com
Disclaimer

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as “expect,” “look forward to,” “anticipate” “intend,” “plan,” “believe,” “seek,” “estimate,” “will,” “project” or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens’ management, of which many are beyond Siemens’ control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in Siemens’ Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens neither intends, nor assumes any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.

TRENT® and RB211® are registered trade marks of and used under license from Rolls-Royce plc.

Trent, RB211, 501 and Avon are trade marks of and used under license of Rolls-Royce plc.