Peaking plant Bayonne (NJ/USA)
A flexible solution to support a volatile grid based on aero-derivative turbines
Tom Scarinci & Tobias Aschoff

Unrestricted © Siemens AG 2017
Case study – Bayonne Energy Center – Key facts

Owner (NYSE:MIC)
Macquarie Infrastructure Corporation

Operator
EthosEnergy Group

- Eight aero-derivative Siemens SGT-A65 TR* with 512 MW generating capacity, in operations since 2012
- Currently building additional 132 MW (two more SGT-A65 TR) on adjacent land owned by IMTT
- Also constructing additional gas lateral to Spectra TETLP M3 pipeline (already connected to Transco Z6)
- Dual fuel capable with liquid fuel connection from Buckeye Terminal
- Provides peak power to New York City via a 6.5-mile submarine cable

* formally know as Industrial Trent 60
Bayonne Energy Center – Necessity

BEC is needed to ensure competitive peaking power and grid stability for NYC

Why …

NYC load is **predominantly driven by the ambient temperature** and the weather forecast (A/C demand depending on temperature)
The NYC grid has a **load spread of 3,500 MW** and more per day
Most of the other NYC power plant facilities are more than 40 years old

How …

BEC is the New York City peaking facility providing the most **flexible operating range** and the only one offering **10min non-spinning-reserve** with automatic dispatch

→ 500 MW in 10 min
Bayonne Energy Center – Purchasing Criteria

<table>
<thead>
<tr>
<th>BEC Requirements</th>
<th>SGT-A65 TR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple starts and stops per day</td>
<td>Unlimited cycles per day, no lock-out</td>
</tr>
<tr>
<td>Low cost per start</td>
<td>Low parasitic loads, fast acceleration</td>
</tr>
<tr>
<td>10 minute start (non-spinning reserve)</td>
<td>500 MW in <10 minutes (cold to full load)</td>
</tr>
<tr>
<td>High full and part load efficiency</td>
<td>Best in class efficiency levels</td>
</tr>
<tr>
<td>High availability and starting reliability</td>
<td>Very low eFORd, very high starting reliability</td>
</tr>
<tr>
<td>High power density</td>
<td>Highest MW output on BEC’s footprint</td>
</tr>
<tr>
<td>Black start capable</td>
<td>Low starting power requirement (<350 kW)</td>
</tr>
<tr>
<td>Automatic generation control</td>
<td>Automatically starts & achieves MW set point</td>
</tr>
<tr>
<td>Low operation and maintenance costs</td>
<td>Two operators on shift for eight turbines</td>
</tr>
<tr>
<td>State of the art (SOTA) emission levels</td>
<td>Best achievable emission performance</td>
</tr>
</tbody>
</table>
Bayonne Energy Center –
High cycling capability

March 7, 2016: 33 total start (six starts on unit 2)

Total plant Output
(~500 MW peak)

Unit No. 2 Output
(64 MW max)

No EOH counter
Bayonne Energy Center –
10 minutes start up capability & low cost per start

Fast start enables 10 min non-spinning-reserve and low start up costs due to less time at lower efficiency

Cost per start:
$40-60

Based on ≈20 MMBTU
gas required to accelerate
to base load and
$2-3 per MMBTU
Bayonne Energy Center – High full and part load efficiency

Multiple unit concept enables flexibility and optimized efficiency at all operating points

Advantages of multiple unit power plants

- High simple cycle full load efficiency
- Better efficiency at most part load operating points
- Fast start and steep ramp rates
- Low station power loss during gas turbine maintenance outage (up to 448 MW available)
- Turndown to <5% plant output
- Emission compliance over entire curve

BEC efficiency higher than most other NYC peaking facilities

* Schematic
Bayonne Energy Center –
High availability and starting reliability

IEEE Standard – eFORd
A measure of the probability that a generating unit will not be available due to forced outages or forced derating when there is a demand on the unit to generate

Average simple cycle eFORd
≈ 5.30%

BEC 2016 YTD eFORd
= 0.86 %

Only 13 failed starts out of 2653 attempts.

Average failed start
≈ 15 minutes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>January</td>
<td>207</td>
<td>206</td>
<td>99.5%</td>
<td>0.40</td>
<td>96.82</td>
</tr>
<tr>
<td>February</td>
<td>263</td>
<td>261</td>
<td>99.2%</td>
<td>0.73</td>
<td>99.90</td>
</tr>
<tr>
<td>March</td>
<td>512</td>
<td>511</td>
<td>99.8%</td>
<td>1.76</td>
<td>98.50</td>
</tr>
<tr>
<td>April</td>
<td>423</td>
<td>422</td>
<td>99.8%</td>
<td>0.29</td>
<td>88.07</td>
</tr>
<tr>
<td>May</td>
<td>328</td>
<td>325</td>
<td>99.1%</td>
<td>0.03</td>
<td>81.06</td>
</tr>
<tr>
<td>June</td>
<td>275</td>
<td>273</td>
<td>99.3%</td>
<td>0.14</td>
<td>99.89</td>
</tr>
<tr>
<td>July</td>
<td>311</td>
<td>311</td>
<td>100.0%</td>
<td>0.59</td>
<td>97.63</td>
</tr>
<tr>
<td>August</td>
<td>334</td>
<td>331</td>
<td>99.1%</td>
<td>1.30</td>
<td>97.90</td>
</tr>
<tr>
<td>Report Totals</td>
<td>2653</td>
<td>2640</td>
<td>99.5%</td>
<td>0.86</td>
<td>94.94</td>
</tr>
</tbody>
</table>

Att. = Attempted Starts | Act. = Actual Starts | Rel. = Starting Reliability | eFORd = Equivalent Demand Forced Outage Rate | EAF = Equivalent Availability Factor
Bayonne Energy Center –
Highest power density

Optimal land utilization in the high price NYC area

The applied solution enables about 20% more power on the give ground

<table>
<thead>
<tr>
<th>SGT-A65 TR</th>
<th>Other solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 MW</td>
<td>~400 MW</td>
</tr>
<tr>
<td>19 kW/m²</td>
<td>14.5 kW/m²</td>
</tr>
</tbody>
</table>

+132 MW BEC Expansion Site
Bayonne Energy Center ("BEC"): 6.8 acres (≈27,500 m²)
Siemens SGT-A65 TR
Heritage from Rolls-Royce Aero Trent

~30 Million – Aero Trent 800 hours
1.2 Million – SGT-A65 TR fleet hours

104 – Total engines sold
Siemens SGT-A65 TR
Combustion Systems

Wet Low Emission (WLE)

Dual fuel with water injection burner
No EOH on liquid operation.

Dry Low Emission (DLE)
Siemens SGT-A65 TR
Package

Designed for Maintainability and Quick Installation

Engine weighs less than 11 tonnes and is air freight transportable
Small footprint (~220 m²)
Installation possible <75 days
Engine change-out within <48 hours

Weights
- GT Skid: 75,000 kg
- GT Package Roof: 18,000 kg
- GT Engine: 14,000 kg
- Filter: 21,300 kg
- Generator Skid: 107,000 kg
SGT-A45 TR Mobile Unit –

Key benefits

- 44 MWₑ (ISO) – highest power density
- 2-weeks installation
- Delivered by road, air or sea
- Performance optimized for hot climates
- 50 Hz or 60 Hz
- Liquid and gas fuel
- Emissions as low as 25 vppm NOₓ
- Proven turbomachinery
- Minimal site interfaces and preparation
Conclusion & Outlook

Conclusion

BEC is a successful plant for grid support in a weather driven, highly volatile grid due to
- Fast start and operational flexibility
- High full and part load efficiency
- High reliability and availability

Bayonne recently extends the plant by two more units due to good experience and great performance

The concept can be applied to other volatile grids – e.g. with high share of renewables

Outlook

Flexible Combine Cycle Plants
with up to 53.6% efficiency

Hybrid plants
- SGT-A65 TR with heavy duty large gas turbine (using the same boiler)
- SGT-A65 TR combined with battery storage for back start and quick response
- SGT-A65 TR with CSP plant (using the same boiler)

Mobile Power
SGT-A45 TR Mobile Unit with 44MW launched
Thank you for your attention

Tobias Aschoff
Power and Gas Division
Distributed Generation
PG DG SPM
Mobile: +49 173 5133163
E-mail: tobias.aschoff@siemens.com

Tom Scarinci
Power and Gas Division
Distributed Generation
PG DG GCS
Mobile: +1 514 4636283
E-mail: thomas.scarinci@siemens.com

siemens.com
Disclaimer

This document contains statements related to our future business and financial performance and future events or developments involving Siemens that may constitute forward-looking statements. These statements may be identified by words such as "expect," "look forward to," "anticipate" "intend," "plan," "believe," "seek," "estimate," "will," "project" or words of similar meaning. We may also make forward-looking statements in other reports, in presentations, in material delivered to shareholders and in press releases. In addition, our representatives may from time to time make oral forward-looking statements. Such statements are based on the current expectations and certain assumptions of Siemens’ management, of which many are beyond Siemens’ control. These are subject to a number of risks, uncertainties and factors, including, but not limited to those described in disclosures, in particular in the chapter Risks in Siemens’ Annual Report. Should one or more of these risks or uncertainties materialize, or should underlying expectations not occur or assumptions prove incorrect, actual results, performance or achievements of Siemens may (negatively or positively) vary materially from those described explicitly or implicitly in the relevant forward-looking statement. Siemens neither intends, nor assumes any obligation, to update or revise these forward-looking statements in light of developments which differ from those anticipated.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates or their respective owners.

TRENT® and RB211® are registered trade marks of and used under license from Rolls-Royce plc.
Trent, RB211, 501 and Avon are trade marks of and used under license of Rolls-Royce plc.